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Node representation learning methods, such as graph neural networks, show promising results when testing

and training graph data come from the same distribution. However, the existing approaches fail to generalize

under distribution shifts when the nodes reside in multiple latent environments. How to learn invariant node

representations to handle distribution shifts with multiple latent environments remains unexplored. In this

paper, we propose a novel Invariant Node representation Learning (INL) approach capable of generating

invariant node representations based on the invariant patterns under distribution shifts with multiple latent

environments by leveraging the invariance principle. Specifically, we define invariant and variant patterns as

ego-subgraphs of each node, and identify the invariant ego-subgraphs through jointly accounting for node

features and graph structures. In order to infer the latent environments of nodes, we propose a contrastive

modularity-based graph clustering method based on the variant patterns. We further propose an invariant

learning module to learn node representations that can generalize to distribution shifts. We theoretically

show that our proposed method can achieve guaranteed performance under distribution shifts. Extensive

experiments on both synthetic and real-world node classification benchmarks demonstrate that our method

greatly outperforms state-of-the-art baselines under distribution shifts.
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1 INTRODUCTION
Graph-structured data is ubiquitous in the real world, e.g., social networks [22], knowledge

graphs [61], biology networks [5], chemical molecules [80], etc. Learning node representation is
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critical for various graph analytical tasks such as node classification [38] and link prediction [67]. Es-

pecially, graph neural networks (GNNs) [38, 75, 81] have shown great successes in learning effective

node representations and handling applications from various fields [14, 35, 55, 70, 84, 94, 97, 100].

Despite their successes, the existing node representation learning approaches typically assume

that the testing and training graph data are drawn from the same distribution, namely the node

features and graph structures of labeled training nodes and testing nodes follow similar patterns.

Under this assumption, the node representation learning methods can naturally generalize to

unseen testing nodes. However, this assumption can be easily violated in real-world graphs since

nodes always reside in multiple latent environments where distribution shifts widely exist between

multiple latent environments of training and testing data induced by complex underlying data

generation mechanism [6]. For example, in protein-protein interaction graphs, the distributions

of protein features/interactions (i.e., input data) and their functions (i.e., labels) exist significant

changes between different species that the proteins come from (i.e., environments) [15]. In citation

networks, the papers’ citations (i.e., input data) and their subject topics (i.e., labels) are strongly

affected by the publication time (i.e., environments) [33]. There exist increasing evidences suggesting

that most node representation learning approaches are vulnerable to distribution shifts [33, 78, 79]

and fail to achieve out-of-distribution (OOD) generalization. If the models capture the variant

correlations across different environments rather than focus on invariant patterns of the truly

predictive properties in multiple latent environments, they will inevitably fail under distribution

shifts, hindering their applications in real-world graphs, especially for high-stake applications such

as molecular prediction [80], financial analysis [85], medical diagnosis [47], drug repurposing [32],

etc.

In this work, we study learning invariant node representations to handle distribution shifts with

multiple latent environments, which remains unexplored and poses great challenges as follows.

• First, nodes in the graph are connected by structures and cannot be modeled as independent

samples for predictions. Distribution shifts can happen on both node features and graph structures,

leading to complex invariant and variant patterns. How to define and identify these patterns to

capture sufficiently predictive information is non-trivial.

• Second, environment labels for nodes are usually unavailable or prohibitively expensive to collect.

How to infer the environment labels, which is critical for designing invariant learning methods,

is also challenging since the environments of different nodes are also highly entangled.

• Last but not least, even with the inferred environment labels of nodes, it requires tailored designs

to learn invariant node representations capable of generalization under distribution shifts with

theoretical guarantees.

To tackle these challenges, we propose Invariant Node representation Learning (INL) approach
capable of learning invariant node representations under distribution shifts with multiple latent

environments and achieve theoretically grounded generalization performance. The framework

of INL is shown in Figure 1. In particular, we take a local view and define invariant patterns

as ego-subgraphs, i.e., subgraphs of the 𝐿-order ego-graph of each node, and identify these ego-

subgraphs through jointly considering node features and graph structures. Then, we use the variant

ego-subgraphs, i.e., the complement of invariant ego-subgraphs, to infer environment labels by

proposing a contrastive modularity-based graph clustering method. The variant ego-subgraphs

capture correlative but not truly predictive patterns with node labels under distribution shifts

and therefore contain discriminative information to infer environment labels of nodes. Finally, we

propose to optimize the maximal invariant pattern criterion given the identified invariant ego-

subgraphs and inferred environments to produce invariant node representations. We theoretically

show that INL can achieve guaranteed generalization performance by finding a maximal invariant
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Fig. 1. The framework of INLmodel. Our proposed method jointly optimizes three modules: (1) The invariant
ego-subgraph identification module uses Ψ(·) to identify the invariant ego-subgraph 𝐺𝐼𝑣 and the variant
ego-subgraph𝐺𝑆𝑣 for each node 𝑣 . (2) The node environment inference module uses the variant ego-subgraphs
{𝐺𝑆𝑣 } to infer the latent environments by a contrastive modularity-based graph clustering. (3) The invariance
regularizationmodule jointly optimizes the invariant ego-subgraph generatorΨ(·), the representation learning
function 𝑔(·), and the classifier 𝑤 (·). Training stage (shown by grey arrows): we back propagate with the
objective function to update model parameters. Testing stage (shown by orange arrows): we use the optimized
model to make predictions. This example assumes that the node labels have two classes, which are denoted
by red and green colors respectively.

pattern. We conduct extensive experiments on both synthetic datasets and real-world benchmarks

for the node classification task. The results show that INL achieves substantial performance gains

on the unseen testing nodes compared with various state-of-the-art baselines. Our contributions

are summarized as follows.

• We propose a novel Invariant Node representation Learning (INL) approach to learn invariant

node representations capable of OOD generalization under distribution shifts. To the best of our

knowledge, we are the first to study invariant node representation learning with multiple latent

environments.

• We design a contrastive modularity-based graph clustering method to infer the environment

labels of nodes for the graph with complex multiple latent environments.

• We propose a maximal invariant pattern criterion to learn node representations. We theoretically

show that by finding maximal invariant ego-subgraphs, INL can achieve guaranteed OOD

generalization performance under distribution shifts.

• Extensive experimental results demonstrate the effectiveness of INL on various synthetic and

benchmark datasets for the node classification task under distribution shifts.

We introduce the notations and preliminaries in Section 2. In Section 3, we describe the problem

formulation and the details of our proposed INL. We present the experimental results in Section 4,

including quantitative comparisons on both synthetic and real-world datasets, complexity analysis,

ablation studies, hyper-parameter sensitivity, etc. Subsequently, some related works are reviewed

in Section 5. Finally, we conclude this work in Section 6.
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2 NOTATIONS AND PRELIMINARIES
2.1 Notations
Consider a graph 𝐺 = (𝑉 , 𝐸), the node feature matrix 𝑋 = {𝑥𝑣 |𝑣 ∈ 𝑉 } ∈ R |𝑉 |×𝐹 (where 𝐹 denotes

the node feature dimension) and labels 𝑌 = {𝑦𝑣 |𝑣 ∈ 𝑉 }. The adjacency matrix is denoted as

𝐴 = {𝑎𝑣,𝑣′ |𝑣, 𝑣 ′ ∈ 𝑉 } ∈ R |𝑉 |× |𝑉 | , where 𝑎𝑣,𝑣′ = 1 means there exists an edge connecting node 𝑣 and

𝑣 ′, and 𝑎𝑣,𝑣′ = 0 otherwise. We assume the nodes 𝑉 are collected from multiple environments, i.e.,

𝑉 = {𝑉 𝑒 }𝑒∈supp(E𝑡𝑟 ) , where 𝑉 𝑒 denotes the nodes from environment 𝑒 , supp(E𝑡𝑟 ) is the support
of the environmental variable. We use v and y to denote the random variables of node and label,

respectively. We summarize the key notations of this paper and the corresponding descriptions in

Table 1.

Table 1. Notations.

Notation Description

𝐺 = (𝑉 , 𝐸) The input graph 𝐺 with node set 𝑉 and edge set 𝐸

𝑋,𝐴,𝑌 The node feature matrix, the adjacency matrix, and the label vector

𝐺𝑣,Gv An instance and the random variable of node 𝑣 ’s ego-graph

𝐺 𝐼𝑣 = Ψ(𝐺𝑣) An instance of the invariant ego-subgraph and the invariant ego-subgraph generator

Ψ∗ The optimal invariant ego-subgraph generator

𝑋𝑣, 𝐴𝑣 The local node feature matrix and the adjacency matrix of ego-graph 𝐺𝑣
𝐺𝑆𝑣 = 𝐺𝑣\𝐺 𝐼𝑣 An instance of the variant ego-subgraph

Gv, v,Y, y The random variable of ego-graph, node, label vector, node label

𝑋 𝐼𝑣/𝑋𝑆𝑣 The local node feature matrix of the invariant/variant ego-subgraph 𝐺𝑣
𝐴𝐼𝑣/𝐴𝑆𝑣 The local adjacency matrix of the invariant/variant ego-subgraph 𝐺𝑣
Z𝐼 The invariant node representations

N𝑣 The node 𝑣 ’s 𝐿-hop neighbors

𝐾 The number of the ground-truth environments

E/E𝑡𝑟 A random variable on indices of all/training environments

E𝑖𝑛𝑓 𝑒𝑟 A random variable on indices of the inferred environments

|E𝑖𝑛𝑓 𝑒𝑟 | The number of the inferred environments

𝐶 The cluster assignment matrix

𝐶𝑣 The one-hot vector indicating the environment of node 𝑣 with dimensionality |E𝑖𝑛𝑓 𝑒𝑟 |
𝑒 An instance of environment

G,Y The graph space and label space

𝑓 The predictor from G to Y

𝑤 The classifier from R𝑑 to Y

ℎ The representation learning function from G to R𝑑

𝑔 The representation learning function for invariant ego-subgraph

IE The invariant ego-subgraph generator set with respect to E
ℓ The loss function

2.2 Preliminaries
Recently, invariant learning has received surging attention to enable generalizing to distribution

shifts, i.e., out-of-distribution (OOD) generalization. It aims to exploit the invariant relationships

between the input data and labels across distribution shifts, while filtering out the variant spurious
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correlations
1
. Following the invariant learning literature [2, 4, 11, 40, 42, 64], we formulate the

problem of learning invariant node representations capable of generalizing to distribution shifts,

i.e., out-of-distribution (OOD) generalized node representation learning, as:

Problem 1. Let E denote the random variable on indices of all possible environments of nodes 𝑉 .
The goal is to find an optimal predictor 𝑓 ∗ (·) mapping nodes to their labels that performs well on all
environments:

𝑓 ∗ (·) = argmin

𝑓
sup

𝑒∈supp(E)
R(𝑓 |𝑒), (1)

where R(𝑓 |𝑒) is the risk of the predictor 𝑓 on the nodes that belong to environment 𝑒 . Eq. (1) encourages
to learn the predictor whose performance on the worst-case environment is optimal, where such min-
max optimality with respect to unseen test environments is proved to satisfy the OOD generalization in
the invariant learning literature [3, 40, 64]. We further decompose 𝑓 (·) = 𝑤 ◦ℎ, where ℎ(·) : G→ R𝑑 is
the representation learning function, G is the graph space, 𝑑 is the dimensionality, and𝑤 (·) : R𝑑 → Y
is the classifier.

Note that supp(E𝑡𝑟 ) ⊂ supp(E). Distribution shifts indicate that 𝑃𝑒 (v, y) ≠ 𝑃𝑒
′ (v, y), 𝑒 ∈

supp(E𝑡𝑟 ), 𝑒′ ∈ supp(E) \ supp(E𝑡𝑟 ), i.e., the joint distribution of node and label is different in

training and testing data. The testing nodes are not available in the training stage, meaning that

we can not obtain a prior distribution of testing nodes for training
2
. However, Problem 1 is difficult

to be directly solved since (1) the nodes are non-independent which connected by graph structure

inducing obstacle for predictions, and (2) the environment labels for the nodes are unobserved [4, 40],
which are usually unavailable or prohibitively expensive to collect for most real scenarios.

3 METHOD
In this section, we introduce our proposed INL in detail. The framework of INL is shown in Figure 1.

Specifically, we first propose an invariant ego-subgraph identification module. Then, we infer

environment labels by proposing a contrastive modularity-based graph clustering method. Lastly,

we optimize the maximal invariant pattern criterion to produce invariant node representations

capable of generalizing under distribution shifts with theoretical guarantees.

3.1 Problem Formulation
In this paper, we focus on learning invariant node representation by adopting message-passing

GNNs. Since only the immediate neighbors of nodes are aggregated in each message-passing layer,

the representation of nodes only depends on their 𝐿-hop neighbors, where 𝐿 is the number of

message-passing layers. Therefore, we learn representations of nodes by only focusing on their

𝐿-order ego-graph, which is the common assumption for most message-passing GNNs [34, 38, 78].

Denote the node 𝑣 ’s 𝐿-hop neighbors as N𝑣 = {𝑢 |𝑑 (𝑣,𝑢) ≤ 𝐿}, where 𝑑 (𝑣,𝑢) is the shortest path
distance between node 𝑣 and 𝑢. The nodes in N𝑣 and their connections form the ego-graph 𝐺𝑣 of

node 𝑣 , which is represented as a local node feature matrix 𝑋𝑣 = {𝑥𝑢 |𝑢 ∈ N𝑣} and local adjacency

matrix 𝐴𝑣 = {𝑎𝑢,𝑢′ |𝑢,𝑢′ ∈ N𝑣}. We use Gv and 𝐺𝑣 to denote the random variable and instance of

ego-graphs, and use G and Y to denote the random variable of input graph and node label vector,

1
Although the variant spurious correlations can be potentially useful for predictions in some environments, such correlations

are not stable and can change across different environments. It is infeasible to judge whether the variant spurious correlations

are still correct or not when the model is deployed in unknown testing environments with distribution shifts. Therefore, for

achieving good OOD generalization rather than trivially overfitting the training data, the key idea of invariant learning is

to learn invariant models for guaranteed generalization under distribution shifts.

2
We follow this more challenging out-of-distribution generalization [2, 4, 11, 40, 42, 64] setting instead of the semi-

supervised/adaptation setting that unlabeled testing graph data is available during training.
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respectively. Then, we can reformulate the problem by using ego-subgraphs, i.e., a ego-graph

dataset defined as G = {G𝑒 }𝑒∈supp(E𝑡𝑟 ) , where G𝑒 = {(𝐺𝑒𝑣 , 𝑦𝑒𝑣) |𝑣 ∈ 𝑉 𝑒 } denotes the ego-graphs
in environment 𝑒 . Notice that ego-graphs are not independent samples, but they can be seen as

a Markov blanket [34, 78], so that the conditional distribution can be decomposed (conditional

independence), i.e., 𝑃 (Y|G) = ∏
v 𝑃 (y|Gv).

Problem 2. Given the training graph where nodes are from multiple latent environments but
without environment labels, the task is to jointly infer the node environments E𝑖𝑛𝑓 𝑒𝑟 , and learn 𝑓 ∗ (·)
in Problem 1 with E𝑖𝑛𝑓 𝑒𝑟 to achieve good OOD generalization performance under distribution shifts.

3.2 Invariant Ego-subgraph Identification
To enable OOD generalization, recent studies on invariant learning [2, 4, 11, 40, 42, 64] propose to

train a predictor using only a portion of features of each input instance which capture the invariant

and sufficiently predictive relations with labels. Since we have transformed the node representation

learning task into only using ego-graphs 𝐺𝑣 , we assume that each ego-graph instance has an

invariant subgraph, i.e., ego-subgraph 𝐺 𝐼𝑣 ⊂ 𝐺𝑣 , that possesses invariant and sufficiently predictive

information to the node’s label 𝑦𝑣 in different environments under distribution shifts. We refer to

the rest of each ego-graph, i.e., the complement of𝐺 𝐼𝑣 , as the variant ego-subgraph and denote it as

𝐺𝑆𝑣 . 𝐺
𝑆
𝑣 represents the surrounding part of the node 𝑣 whose relationship with the label is variant

across different environments, e.g., spurious correlations for predicting node 𝑣 . The graph model

will have a better OOD generalization ability if it can identify the invariant ego-subgraph 𝐺 𝐼𝑣 for

each node accurately and learn node representation based on 𝐺 𝐼𝑣 for predictions.

Formally, we denote a generator for each node’s ego-graph to obtain the invariant ego-subgraph

as 𝐺 𝐼𝑣 = Ψ(𝐺𝑣). We make the following assumption.

Assumption 1. Given ego-graph Gv, there exists an optimal invariant ego-subgraph generator

Ψ∗ (Gv) satisfying the following properties:
a. Invariance property: ∀𝑒, 𝑒′ ∈ supp(E), 𝑃𝑒 (y|Ψ∗ (Gv)) = 𝑃𝑒

′ (y|Ψ∗ (Gv)), where 𝑃𝑒 (·) and 𝑃𝑒
′ (·)

denote the probability distribution in two environments 𝑒 and 𝑒′, respectively.
b. Sufficiency property: y = 𝑤∗ (𝑔∗ (Ψ∗ (Gv))) + 𝜖, 𝜖 ⊥ Gv, where 𝑔

∗ (·) denotes a representation
learning function,𝑤∗ is the classifier, ⊥ indicates statistical independence, and 𝜖 is random noise.

The invariance assumption means that the node representations learned on invariant ego-

subgraphs have an invariant relation to the node labels across different environments. The suffi-

ciency assumption means that the node representations learned on invariant ego-subgraphs are

sufficiently predictive to the node labels.

In this paper, we instantiateΨ(·) using two learnable masks on node features and graph structures

(i.e., edges). First, the edge mask is responsible for splitting the local adjacency matrix 𝐴𝑣 of the

ego-graph 𝐺𝑣 into the local adjacency matrix 𝐴𝐼𝑣 of the invariant ego-subgraph 𝐺
𝐼
𝑣 and the local

adjacency matrix𝐴𝑆𝑣 of the variant ego-subgraph𝐺
𝑆
𝑣 . A straight-forward strategy is to train a binary

mask matrix𝑀𝐴𝑣 = {0, 1} |N𝑣 |× |N𝑣 |
on the local adjacency matrix 𝐴𝑣 . However, directly optimizing

such a mask matrix is a discrete optimization problem and intractable in practice, especially for

large-scale graphs [88]. Besides, learning a mask for each ego-subgraph cannot share knowledge

among different nodes. Therefore, we adopt a learnable GNN (denoted as GNN
M
) to parameterize

the mask matrix. Specifically, we relax edge masks from binary variables to continuous variables in

[0, 1]. The soft mask for each edge (𝑢,𝑢′), 𝑢,𝑢′ ∈ N𝑣 in ego-graph 𝐺𝑣 is:

𝑀
𝐴𝑣

𝑢,𝑢′ = Sigmoid(ZM

𝑢

⊤ · ZM

𝑢′ ), ZM = GNN
M (𝐺𝑣)∈ R𝑑 . (2)

Besides the edge mask, we also adopt a soft 𝐹 -dimensional feature mask 𝑀𝑋 ∈ [0, 1]𝐹 shared

by all the nodes for selecting the invariant node features in the ego-graph 𝐺𝑣 . The invariant
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ego-subgraph 𝐺 𝐼𝑣 = (𝐴𝐼𝑣, 𝑋 𝐼𝑣 ) and variant ego-subgraph 𝐺𝑆𝑣 = (𝐴𝑆𝑣 , 𝑋𝑆𝑣 ) of 𝐺𝑣 are calculated as:

𝐴𝐼𝑣 = 𝑀
𝐴𝑣 ⊙ 𝐴𝑣, 𝑋 𝐼𝑣 = 𝑀𝑋 ⊙ 𝑋𝑣 ; 𝐴𝑆𝑣 = 𝐴𝑣 −𝐴𝐼𝑣, 𝑋𝑆𝑣 = 𝑋𝑣 − 𝑋 𝐼𝑣 , (3)

where ⊙ is the element-wise matrix multiplication. Using the above method, we can generate all

the invariant ego-subgraphs {𝐺 𝐼𝑣 |𝑣 ∈ 𝑉 } and variant ego-subgraphs {𝐺𝑆𝑣 |𝑣 ∈ 𝑉 }.

3.3 Node Environment Inference
After splitting the nodes’ ego-graphs into invariant and variant subgraphs, we can infer the

environment label E𝑖𝑛𝑓 𝑒𝑟 using variant subgraphs {𝐺𝑆𝑣 |𝑣 ∈ 𝑉 }. The intuition is that since the

invariant ego-subgraphs capture the invariant relationships between predictive node features and

graph structures with the node labels, the variant ego-subgraphs in turn capture variant spurious

correlations under different distributions. Consider two nodes 𝑣, 𝑣 ′ from the same environment (e.g.,

two proteins from the same species or two papers published in the same period). Their variant ego-

subgraphs𝐺𝑆𝑣 and𝐺
𝑠
𝑣′ are likely show similar environment patterns. Based on the graph homophily

assumption [57] that similar nodes are more likely to connect to each other, the nodes from the

same environment will tend to be more densely connected in their variant ego-subgraphs than

nodes from different environments (an illustrating example is shown in Figure 1). Therefore, we

can infer the environments by conducting graph clustering based on the variant node features and

edges.

Specifically, let 𝑋𝑆 and 𝐴𝑆 denote the node features and edges in {𝐺𝑆𝑣 |𝑣 ∈ 𝑉 }. Assuming there

are 𝐾 latent environments in graph, we design a contrastive modularity-based clustering method

to infer the environments by learning a cluster assignment matrix 𝐶 = {𝐶𝑣 |𝑣 ∈ 𝑉 }, where 𝐶𝑣 is
𝐾-dimensional one-hot vector indicating the environment of node 𝑣 . We propose to minimize the

following contrastive objective for clustering the nodes denoted by (𝑋𝑆 , 𝐴𝑆 ):

min

𝐶
ℓ = − 1

𝐾

𝐾∑︁
𝑘=1

log

exp(𝐵𝑘,𝑘 )∑𝐾
𝑘 ′=1,𝑘 ′≠𝑘 exp(𝐵𝑘,𝑘 ′ )

, (4)

where

𝐵 =
1

2𝑚

(
𝐶⊤𝐴𝑆𝐶 − 1

2𝑚
diag

(
𝐶⊤dd⊤𝐶

) )
. (5)

In Eq. (5), d and𝑚 indicate the degree vector and the number of edges calculated by𝐴𝑆 , respectively.

diag(·) means only keeping the diagonal elements of the input matrix. 𝐵 ∈ R𝐾×𝐾 is the modularity

matrix, whose entry 𝐵𝑘,𝑘′ is the probability of an edge existing between cluster 𝑘 and 𝑘 ′. Optimizing

Eq. (4) can maximize the connection probability between nodes from the same clusters (i.e., positive

pairs) and minimize the connecting probability between nodes from the different clusters (i.e.,

negative pairs) via a contrastive scheme [13], encouraging to form clear clusters. Since optimizing

the binary cluster assignment matrix is proven to be NP-hard [8], we follow [73] to relax 𝐶 ∈
[0, 1] |𝑉 |×𝐾 as a soft cluster assignment and adopt a GNN to calculate the assignment matrix, i.e.,

𝐶 = Softmax

(
GNN

C
(
𝑋𝑆 , 𝐴𝑆

) )
. Finally, the optimal cluster assignment 𝐶∗ can be used to indicate

the inferred environments E𝑖𝑛𝑓 𝑒𝑟 of nodes.

3.4 Invariance Regularization
After obtaining the inferred invariant ego-subgraphs {𝐺 𝐼𝑣 |𝑣 ∈ 𝑉 } and environment labels E𝑖𝑛𝑓 𝑒𝑟 , we
propose the invariance regularization module which can make the graph model to generate node

representations capable of OOD generalization under distribution shifts. Specifically, we aim to learn

the optimal generator Ψ∗ in Assumption 1 by proposing and optimizing themaximal invariant
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ego-subgraph generator criterion. Following the invariant learning literature [11, 40, 50, 51], we

give the following definition.

Definition 1. The invariant ego-subgraph generator set I with respect to E is defined as:

IE = {Ψ(·) : 𝑃𝑒 (y|Ψ(Gv)) = 𝑃𝑒
′ (y|Ψ(Gv)), 𝑒, 𝑒′ ∈ supp(E)}. (6)

Then, we show that the optimal generator Ψ∗ satisfies the following theorem.

Theorem 1. A generator Ψ(Gv) is the optimal generator that satisfies Assumption 1 if and only if
it is the maximal invariant ego-subgraph generator, i.e., Ψ∗ = argmaxΨ∈IE 𝐼 (y;Ψ(Gv)), where 𝐼 (·; ·)
is the mutual information between the label and the generated invariant ego-subgraph.

Proof. Denote Ψ̂ = argmaxΨ∈IE 𝐼 (y;Ψ(Gv)). According to the invariance property of As-

sumption 1, we have Ψ∗ ∈ IE . Therefore, we prove the theorem by showing that 𝐼 (y; Ψ̂(Gv)) ≤
𝐼 (y;Ψ∗ (Gv)) and consequently, Ψ̂ = Ψ∗. To show the inequality, we use the functional representa-

tion lemma [23], which states that for any random variablesX1 andX2, there exists a random variable

X3 independent ofX1 such thatX2 can be represented as a function ofX1 andX3. So for Ψ
∗ (Gv) and

Ψ̂(Gv), there exists Ψ′ (Gv) satisfying that Ψ′ (Gv) ⊥ Ψ∗ (Gv) and Ψ̂(Gv) = 𝛾 (Ψ∗ (Gv),Ψ′ (Gv)),
where 𝛾 (·) is a function. Then, we can derive that:

𝐼 (y; Ψ̂(Gv)) = 𝐼 (y;𝛾 (Ψ∗ (Gv),Ψ′ (Gv)))
≤ 𝐼 (y;Ψ∗ (Gv),Ψ′ (Gv))
= 𝐼 (𝑤∗ (𝑔∗ (Ψ∗ (Gv)));Ψ∗ (Gv),Ψ′ (Gv))
= 𝐼 (𝑤∗ (𝑔∗ (Ψ∗ (Gv)));Ψ∗ (Gv))
= 𝐼 (y;Ψ∗ (Gv)) ,

(7)

which finishes the proof. □

Theorem 1 provides us an objective function to optimize the invariant ego-subgraph generator.

However, directly solving according to Theorem 1 for a non-linear Ψ is difficult [40]. Following the

invariant learning literature [40], we minimize the following invariance regularizer:

E𝑒∈supp(E𝑖𝑛𝑓 𝑒𝑟 )R𝑒 (𝑓 (Gv) , y;\ ) + _trace
(
VarE𝑖𝑛𝑓 𝑒𝑟 (∇\R𝑒 )

)
, (8)

where 𝑓 (·) = 𝑤 ◦ 𝑔 ◦ Ψ, E𝑖𝑛𝑓 𝑒𝑟 is the infered environment label, and \ denotes all the learnable

parameters. Recall that 𝑔(·) is the representation learning function of the invariant ego-subgraphs

and𝑤 (·) is the classifier. We instantiate 𝑔 as another GNN as: Z𝐼 = GNN
I (𝐺 𝐼𝑣), where Z𝐼 are the

node representations capturing invariant patterns from the ego-subgraphs.𝑤 (·) is instantiated as

a multilayer perceptron with the ReLU [1] activation function, followed by the softmax function.

By optimizing Eq. (8), we can get our desired generator Ψ and the ego-subgraph representation

learning function 𝑔(·), which collectively serve as our representation learning method ℎ(·), i.e.,
ℎ = 𝑔 ◦ Ψ.

We further theoretically analyze our INL model by showing that the maximal invariant ego-

subgraph generator can achieve OOD optimality.

Theorem 2. Let Ψ∗ be the optimal invariant ego-subgraph generator for Gv in Assumption 1 and
denote the complement as Gv\Ψ∗ (Gv), i.e., the corresponding variant ego-subgraph. Then, we can
obtain the optimal predictor under distribution shifts, i.e., the solution to Problem 1, as follows:

argmin

𝑤,𝑔
𝑤 ◦ 𝑔 ◦ Ψ∗ (Gv) = argmin

𝑓
sup

𝑒∈supp(E)
R(𝑓 |𝑒), (9)
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if the following conditions hold: (1) Ψ∗ (Gv) ⊥ Gv\Ψ∗ (Gv); and (2) ∀Ψ ∈ IE , ∃ 𝑒′ ∈ supp(E) such
that 𝑃𝑒

′ (Gv, y) = 𝑃𝑒
′ (Ψ(Gv), y)𝑃𝑒

′ (Gv\Ψ(Gv)) and 𝑃𝑒
′ (Ψ(Gv)) = 𝑃𝑒 (Ψ(Gv)).

Proof. Denote the function to obtain the complement of invariant ego-subgraph as Φ(Gv) =
Gv\Ψ(Gv) and Φ∗ (Gv) = Gv\Ψ∗ (Gv). By assumption, Ψ∗ (Gv) ⊥ Φ∗ (Gv). Further denote ˆ𝑓 =

argmin𝑤,𝑔𝑤 ◦ 𝑔 ◦ Ψ∗ (Gv). By Assumption 1, we have

ˆ𝑓 (Gv) = 𝑤∗ ◦ 𝑔∗ ◦ Ψ∗ (Gv). (10)

To show that
ˆ𝑓 is 𝑓 ∗, our proof strategy is to show that ∀𝑒 ∈ supp(E), for any possible 𝑓 , R( ˆ𝑓 |𝑒) ≤

R(𝑓 |𝑒′) and therefore sup𝑒∈supp(E) R( ˆ𝑓 |𝑒) ≤ sup𝑒∈supp(E) R(𝑓 |𝑒).
To show the inequality, we have:

R( ˆ𝑓 |𝑒) (11)

= E𝑒Gv,y [ℓ ( ˆ𝑓 (Gv), y)] (12)

=
∑︁
Gv,y

𝑃𝑒 (Gv, y)ℓ ( ˆ𝑓 (Gv), y) (13)

=
∑︁

Φ∗ (Gv )
𝑃𝑒 (Φ∗ (Gv))

[ ∑︁
Ψ∗ (Gv ),y

𝑃𝑒 (Ψ∗ (Gv), y) · ℓ (𝑤∗ (𝑔∗ (Ψ∗ (Gv))), y)
]

(14)

=
∑︁

Ψ∗ (Gv ),y
𝑃𝑒 (Ψ∗ (Gv), y)ℓ (𝑤∗ (𝑔∗ (Ψ∗ (Gv))), y) (15)

≤
∑︁

Ψ(Gv ),y
𝑃𝑒 (Ψ(Gv), y)ℓ (𝑤 (𝑔(Ψ(Gv))), y) (16)

=
∑︁
Φ(Gv )

𝑃𝑒
′ (Φ(Gv))

∑︁
Ψ(Gv ),y

𝑃𝑒 (Ψ(Gv), y)ℓ (𝑤 (𝑔(Ψ(Gv))), y) (17)

=
∑︁
Φ(Gv )

∑︁
Ψ(Gv ),y

𝑃𝑒
′ (Ψ(Gv), y)𝑃𝑒

′ (Φ(Gv))ℓ (𝑤 (𝑔(Ψ(Gv))), y) (18)

=
∑︁
Gv,y

𝑃𝑒
′ (Gv, y)ℓ (𝑓 (Gv), y) (19)

= E𝑒
′
Gv,y [ℓ (𝑓 (Gv), y)] (20)

= R(𝑓 |𝑒′). (21)

□

Intuitively, Theorem 2 shows that we can transform the OOD generalization problem into finding

the optimal invariant ego-subgraphs while maintaining the optimality. The proof of the above

theorems are finished by following the invariant learning literature [45, 50, 51, 78]. And a motivating

example for better understanding is provided in Section 3.6. It indicates that our method can get rid

of spurious correlations and learn OOD generalized node representations based on the identified

invariant ego-subgraphs.

3.5 Training Procedure
We present the pseudocode of INL in Algorithm 1 to show the training procedure. Specifically, we

first obtain the invariant and variant ego-subgraphs for all nodes with the learnable masks on node

features and edges. Then, we infer the environments for all nodes with the variant node features

and edges from variant ego-subgraphs. And we learn the invariant node representations with

invariance regularization based on the inferred invariant ego-subgraphs and environment labels.
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Algorithm 1 The training procedure of the proposed INL.

Input: The input graph and node labels

Output: An optimized predictor 𝑓 (·) mapping node to its label

1: for 𝑒𝑝𝑜𝑐ℎ ← 1 to Epoch do
2: Generate the edge masks with the shared learnable GNN

M
by Eq. (2).

3: Obtain the invariant and variant ego-subgraphs of all nodes by Eq. (3).

4: for 𝑒𝑝𝑜𝑐ℎ′ ← 1 to Epoch_Cluster do
5: Optimize cluster assignment 𝐶 by minimizing the objective in Eq. (4).

6: end for
7: Infer environments E𝑖𝑛𝑓 𝑒𝑟 by obtaining the environment of each node 𝑒𝑣 = argmax 𝐶𝑣 .

8: Generate invariant node representation Z𝐼𝑣 = GNN
I (𝐺 𝐼𝑣) for all nodes.

9: Back propagate with the objective function in Eq. (8).

10: end for

Note that the adopted GNNs including GNN
M
, GNN

C
, and GNN

I
for all ego-graphs are shared,

following [34, 78]. At the testing stage, we directly adopt the optimized 𝑓 to conduct predictions.

In Algorithm 1, “Epoch” means the overall number of epochs for optimizing the proposed method

and “Epoch_Cluster” denotes the number of epochs for clustering to infer environments in each

training epoch. The setting details of the hyperparameters can be found in Section 4.1.3.

3.6 A Motivating Example
For better understanding our proposed method intuitively, we present a linear toy example and the

corresponding theoretical analysis inspired by [78] to show why our method can achieve out-of-

distribution generalization by learning node representations based on invariant ego-subgraph 𝐺 𝐼𝑣
(i.e., invariant node features 𝑋 𝐼𝑣 and structures𝐴𝐼𝑣).

For simplification, in this toy example, we consider the ego-graph𝐺𝑣 (and N𝑣) only contains the

centered node 𝑣 and its 1-hop neighbors (i.e., 𝐿 = 1), which can be split into invariant ego-subgraph

𝐺 𝐼𝑣 (and N 𝐼
𝑣 ) and variant ego-subgraph 𝐺𝑆𝑣 (and N𝑆

𝑣 ). And we consider the dimensionality of node

features 𝐹 = 2, including one-dimensional invariant node feature 𝑥 𝐼𝑣 and variant node feature

𝑥𝑆𝑣 , i.e., 𝑥𝑣 = [𝑥 𝐼𝑣, 𝑥𝑆𝑣 ] for each node 𝑣 . The illustration of ego-graph 𝐺𝑣 is shown in Figure 2. The

dependence among variables in the toy example is shown in Figure 3. We do not distinguish the

notation of random variables and of their particular instances when there is no risk of confusion in

this toy example.
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Fig. 2. The ego-graph 𝐺𝑣 in the toy example.

Considering the representation learning function 𝑔∗ that averages the node representations in
invariant ego-subgraph𝐺 𝐼𝑣 to produce the centered node representations and classifier𝑤

∗
is identity
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mappings in Assumption 1, the node label can be determined by the invariant node features and

structures:

𝑦𝑣 =
1

|N 𝐼
𝑣 |

∑︁
𝑢∈N𝐼

𝑣

𝑥 𝐼𝑢 + 𝜖1, (22)

where 𝜖1 is standard normal noise. And we assume that the variant node feature 𝑥𝑆𝑣 is generated by

identity mapping given the input of the node’s label 𝑦𝑣 and environment 𝑒𝑣 , which can be denoted

as:

𝑥𝑆𝑣 = 𝑦𝑣 + 𝑒𝑣 + 𝜖2, (23)

where 𝜖2 is standard normal noise. 𝑒𝑣 denotes the node 𝑣 ’s environment, following normal distribu-

tion whose mean and variance are dependent on node environment. Besides, we assume the variant

structures are also dependent on the node environment and the environments of nodes in N𝑆
𝑣 is

𝑒𝑣 . For example, in citation networks, the invariant node features and structures can be the paper

published avenues and citations among them that determine the subject topics (i.e., labels), while

the variant node features and structures can be the citation indexes and edges between papers with

high citations in some publication periods (i.e, environments).

Therefore, given the invariant and variant ego-subgraph, we consider the following predictor

model:

𝑦𝑣 =
1

|N 𝐼
𝑣 |

∑︁
𝑢∈N𝐼

𝑣

(\1𝑥 𝐼𝑢 + \2𝑥𝑆𝑢 ) +
1

|N𝑆
𝑣 |

∑︁
𝑢∈N𝑆

𝑣

(\3𝑥 𝐼𝑢 + \4𝑥𝑆𝑢 ). (24)

Note that the ideal solution for the predictor model is \ = [\1, \2, \3, \4] = [1, 0, 0, 0], indicating
that the predictor accurately identifies the sufficiently predictive and invariant node features and

structures for making OOD generalized predictions. However, the following proposition shows

that we cannot obtain this ideal solution if only using standard empirical risk minimization (ERM):

Proposition 3. Denoting the risk (i.e., loss) of the predictormodel 𝑓 asR = 1

|𝑉 |
∑
𝑣∈𝑉 Eyv |Gv=𝐺𝑣

| |𝑦𝑣−
𝑦𝑣 | |22, the optimal solution for objective𝑚𝑖𝑛\R is\ = [\1, \2, \3, \4] = [1− `𝑆

2(`𝑆−`𝐼 ) ,
`𝑆

2(`𝑆−`𝐼 ) ,
`𝐼

2(`𝑆−`𝐼 ) ,
−`𝐼

2(`𝑆−`𝐼 ) ],
assuming `𝐼 ≠ `𝑆 , where `𝐼 = 1

|𝑉 |
∑
𝑣∈𝑉

1

|N𝐼
𝑣 |
∑
𝑢∈N𝐼

𝑣
𝑒𝑢 and `𝑆 = 1

|𝑉 |
∑
𝑣∈𝑉

1

|N𝑆
𝑣 |

∑
𝑢∈N𝑆

𝑣
𝑒𝑢 are depen-

dent on the node environments.

The proof is in Appendix A.1. Proposition 3 indicates directly optimizing with ERMwill inevitably

make the predictor model heavily rely on spurious correlations since \2, \3, \4 is not constant zero,

leading that the model performs poorly under distribution shifts with multiple latent environments.

Next, we show that our objective in Eq. (8) can mitigate this issue.

Proposition 4. The solution of optimizing the invariance regularizer in Eq. (8) to the minimum
satisfies [\2, \3, \4] = [0, 0, 0].

The proof is in Appendix A.2. Proposition 4 indicates our method can get rid of spurious

correlations and learn OOD generalized node representations under distribution shifts with multiple

latent environments by generating node representations based on the identified invariant ego-

subgraph 𝐺 𝐼𝑣 .

Intuitively, Proposition 3 shows that the optimal solution under standard empirical risk min-

imization (ERM) in this toy example (as shown in Figure 2) consists of non-zero coefficients of

the predictor model for variant ego-subgraph, which means that the predictions rely on variant

environment information, e.g., different species that the proteins come from in protein-protein

interaction graphs and the publication time of papers in citation networks. Therefore, the OOD

generalization performance is poor. On the other hand, Proposition 4 shows that the optimal

solution using the proposed method in this toy example only includes non-zero coefficients of the
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predictor model for invariant ego-subgraph, demonstrating that our method can make predictions

only based on the invariant information and is not affected by variant spurious correlations, leading

to strong OOD generalization ability.

4 EXPERIMENTS
In this section, we empirically evaluate our proposed method through the experiments on both

synthetic and real-world datasets, including the experimental setup, quantitative comparisons,

complexity analysis, ablation studies, the impact of the hyper-parameters, etc.

4.1 Experimental Setup
4.1.1 Datasets. We adopt two synthetic datasets with artificial distribution shifts based on two

representative node classification benchmarks Citeseer [86] and Amazon-Photo [69], in which

ground-truth generation processes are controllable. And we also consider another two real-world

datasets OGB-Arxiv and OGB-Proteins from Open Graph Benchmark [33]. The statistics of these

datasets are provided in Table 2.

Table 2. The statistics of the datasets. #Nodes/#Edges are the number of nodes and edges in the graph of the
dataset, respectively. #Classes denotes the number of Classes. Metric is the evaluation metric of the dataset.

Citeseer Amazon-Photo OGB-Arxiv OGB-Proteins

#Nodes 3,327 7,650 169,343 132,534

#Edges 9,104 238,162 1,166,243 39,561,252

#Classes 6 8 40 2

Metric Accuracy Accuracy Accuracy ROC-AUC

Synthetic datasets. Citeseer and Amazon-Photo are two commonly used node classification

benchmarks. Citeseer is a citation network where nodes represent papers and edges indicate their

citations. Amazon-Photo is a co-purchasing network where nodes represent items and edges repre-

sent two items purchased together. For evaluating the model’s out-of-distribution generalization

ability, we introduce distribution shifts between the training and testing data.

Following [78], we first use a randomly initialized 2-layer GCN to generate node labels 𝑌 based

on the original node features and edges, which can be regarded as invariant and sufficiently

predictive information to the labels and denoted by (𝑋 𝐼 , 𝐴𝐼 ). Then we assign nodes into different

environments and create spurious correlations between the label and environment. Based on the

label and environment of each node, we generate an additional feature matrix and additional edges

as the variant patterns, which are denoted by (𝑋𝑆 , 𝐴𝑆 ). The generated feature (i.e., 𝑋𝑆 ) has the

same dimensionality as the original feature (i.e., 𝑋 𝐼 ) and the number of generated edges (i.e., 𝐴𝑆 )

equals the original number of edges (i.e., 𝐴𝐼 ). We then concatenate the two feature matrices and

add the generated edges into the original graph as the input data, i.e., (𝑋 = [𝑋 𝐼 , 𝑋𝑆 ], 𝐴 = 𝐴𝐼 +𝐴𝑆 ).
The dependence among these variables is illustrated in Figure 3.

More specifically, we set the ground truth number of environments as 𝐾 = 3 and adopt a hyper-

parameter 𝑟 ∈ [0, 1] to control the strength of spurious correlations by setting the probability of node
𝑣 belonging to the 𝑘-th environment as 𝑃 (𝑣 ∈ 𝑉 𝑒𝑘 ) = 𝑟 if 𝑘 ≡ 𝑦𝑣 (mod𝐾) and 𝑃 (𝑣 ∈ 𝑉 𝑒𝑘 ) = (1−𝑟 )/2
otherwise. Intuitively, nodes with the same labels more likely belong to the same environment. For

example, for the nodes whose labels are 1 or 4, the probability of these nodes belonging to the 1st

environment is 𝑟 and the probability belonging to the 2nd or 3rd environment is (1 − 𝑟 )/2. In the

𝐾 = 3 case, 𝑟 = 1/3means there is no spurious correlation and a larger 𝑟 indicates a higher spurious
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Fig. 3. The dependence among variables in our synthetic datasets.

correlation between the label and environment. We set 𝑟𝑡𝑒𝑠𝑡 = 1/3 and vary 𝑟𝑡𝑟𝑎𝑖𝑛 in {1/3, 0.5, 0.7} to
generate testing and training graphs respectively, which simulates different strengths of distribution

shifts. We hold out 10% nodes from the training graph for validation.

After obtaining the environment of each node, we generate variant node features 𝑋𝑆 by a two-

layer MLP given the label and environment id as the input. Then we generate variant edges 𝐴𝑆

by connecting nodes with similar variant node features. In particular, we first calculate the scores

of any potential edges (i.e., edges not in 𝐴𝐼 ) by cosine similarity of variant node features of the

two nodes. According to the scores, we select Top-𝑡 edges in all potential edges to form the variant

edges 𝐴𝑆 , where the number of invariant and variant edges is equal, i.e., 𝑡 is the number of edges

in 𝐴𝐼 .

OGB-Arxiv. This dataset consists of Arxiv CS papers from 40 subject areas and their citations.

The task is to predict the 40 subject areas of the papers
3
, e.g., cs.AI, cs.LG, cs.OS, etc. Instead of the

semi-supervised/adaptation setting where unlabeled testing data is available during training [33],

we follow the more common and challenging out-of-distribution generalization [2, 4, 11, 40, 42, 64]

setting, i.e., the testing nodes are not available in the training stage. Since several latent influential

environment factors (e.g., the popularity of research topics) can change significantly over time,

the properties of citation networks will be varying in different time ranges. Therefore, the node

distribution shifts on OGB-Arxiv are introduced by selecting papers published before 2011 as

training set, within 2011-2014 as validation set, and within 2014-2016/2016-2018/2018-2020 as three

testing sets.

OGB-Proteins. In this dataset, nodes represent proteins and edges indicate different types of

biologically meaningful associations between proteins, e.g., physical interactions, co-expression

or homology [71]. The task is to predict the presence of protein functions in a binary classifica-

tion setup. We also follow the out-of-distribution generalization [2, 4, 11, 40, 42, 64] setting, i.e.,

the testing nodes are not available in the training stage, instead of the semi-supervised setting.

Since the latent influential environment factors can vary from different species that the proteins

come from, the properties and associations of proteins will also be different in different species.

Therefore, the node distribution shifts on OGB-Proteins are introduced by selecting nodes into

training/validation/testing sets according to their species. Specifically, the training set and valida-

tion set include proteins and their associations from four and one species, respectively. And each of

the three testing sets consists of proteins and their associations from one of the left three species.

The datasets are publicly available as follows:

• Citeseer: https://github.com/kimiyoung/planetoid with MIT license

• Amazon-Photo: https://github.com/shchur/gnn-benchmark with MIT License

• OGB-Arxiv, OGB-Proteins: https://ogb.stanford.edu/docs/nodeprop/ with MIT License

3
https://arxiv.org/corr/subjectclasses
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4.1.2 Baselines. We compare our INL with the following representative state-of-the-art methods:

• ERM [74]: We use ERM to denote the backbone GNN models, which are trained with the

standard empirical risk minimizing, namely minimizing the sum of risks across environments

and training samples.

• GroupDRO4
[65]: It handles the problem that the distribution minority lacks sufficient

training and seeks to explicitly optimize the worst-performance over a distribution set to

achieve OOD generalization performance.

• IRM5
[4]: It is a representative invariant learning method. To learn invariances across envi-

ronments for enabling OOD generalization, it seeks to find data representations or features

so that the optimal classifier on top of that representation matches for all environments. We

conduct random environment partitions on the nodes of input graph for training because

this method needs the explicit environment labels in advance.

• V-REx6 [42]: This method is proven to be able to recover the causal mechanisms of the

targets and is robust to distribution shifts. Specifically, it minimizes the risk variances of the

training environments for reducing the risk variances of the test environments, leading to

good OOD generalization. Since this method relies on the explicit environment labels that are

unavailable for the nodes in multiple latent environments, we conduct random environment

partitions on the nodes of input graph during training stage.

• EERM7
[78]: It is a recent pioneering work that can tackle node-level prediction tasks under

distribution shifts and achieves a valid solution for the node-level OOD problem under mild

conditions. It studies invariant predictions on graph by assuming all nodes share a single

environment. However, it ignores the more common and challenging situation that nodes

are from multiple latent environments.

• GIL [45]: It learns invariant graph-level representations under distribution shifts. However,

it only focuses on the graph-level generalization on graph classification tasks, but cannot

tackle the key problem studied in this paper where distribution shifts exist on nodes. In the

experiments, we modify its every module from graph-level to node-level for comparisons.

Since all the methods are model-agnostic, we use GCN [38] as the GNN backbone on the synthetic

datasets, and adopt GraphSAGE [30] and GAT [75] on the real-world datasets for a comprehensive

comparison. Intuitively, the node classification on the synthetic datasets is simpler than that on the

real-world datasets. Therefore, the classical GNN model, GCN, is used on the synthetic datasets

while relatively advanced models, GraphSAGE and GAT, are considered on the real-world datasets.

4.1.3 Implementation Details. The number of epochs for optimizing our proposed method (i.e.,

Epoch in Algorithm 1) and baselines is set to 200 for the synthetic datasets (i.e., Citeseer and

Amazon-Photo) and 500 for the real-world datasets (i.e., OGB-Arxiv and OGB-Proteins). The

number of epochs for clustering to infer environments in each training epoch (i.e., Epoch_Cluster

in Algorithm 1) is 20. The Adam optimizer is adopted for gradient descent. Since we focus on

node classification tasks, we use the cross-entropy loss as the loss function ℓ . The classifier𝑤 is

instantiated as a two-layer MLP. The activation function is ReLU [1]. The evaluation metric is

ROC-AUC for OGB-Proteins datasets and accuracy for the others. For GNN
M
, GNN

C
, and GNN

I
,

the number of layers is set to 2 on all the datasets. The dimensionality of the node representations

𝑑 is 32 on the synthetic datasets, 128 on OGB-Arxiv, and 256 on OGB-Proteins. Note that these

GNNs including GNN
M
, GNN

C
, GNN

I
are shared for all ego-subgraphs following [34, 78]. The

4
https://github.com/kohpangwei/group_DRO

5
https://github.com/facebookresearch/InvariantRiskMinimization

6
https://github.com/capybaralet/REx_code_release

7
https://github.com/qitianwu/GraphOOD-EERM
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invariance regularizer coefficient _ in Eq. (8) is chosen from {10−4, 10−2, 100}. The number of the

inferred environments |E𝑖𝑛𝑓 𝑒𝑟 | is chosen from {2, 3, 4}, which is the dimensionality of the vector

𝐶𝑣 indicating the node 𝑣 ’s environment in the cluster assignment matrix𝐶 . We report mean results

and standard deviations of ten runs. The selected _ and |E𝑖𝑛𝑓 𝑒𝑟 | are reported in Table 3.

Table 3. The selected hyper-parameters of _ and |E𝑖𝑛𝑓 𝑒𝑟 | of our method on each dataset.

Citeseer Amazon-Photo OGB-Arxiv OGB-Proteins

_ 10
−4

10
−4

10
−2

10
0

|E𝑖𝑛𝑓 𝑒𝑟 | 3 3 3 4

As for the baselines, we implement them using the official source codes. We conduct the hyper-

parameter search for each baseline covering the search range of both our method and the original

paper (if the search range is reported). The search range and the selected hyperparameters of the

baselines are reported in Table 4. The other hyperparameters of the baselines are kept consistent

with our method as described above.

Table 4. The selected hyper-parameters of the baselines on each dataset.

Range Citeseer Amazon-Photo OGB-Arxiv OGB-Proteins

Number of

Training

Environments

IRM {2, 3, 4} 3 2 3 2

GroupDRO {2, 3, 4, 5} 2 2 4 4

V-REx {2, 3, 4} 3 4 2 2

EERM {2, 3, 4, 5, 10} 3 5 4 3

GIL {2, 3, 4} 2 2 3 3

Regularizer

Coefficient

IRM {10−4, 10−2, 100} 10
−2

10
−4

10
−2

10
−2

V-REx {10−4, 10−2, 100, 102, 104} 10
−4

10
−4

10
0

10
−2

EERM {10−4, 10−2, 1
3
, 0.5, 1.0, 2.0, 5.0} 10

−2
2.0 1.0 1.0

GIL {10−5, 10−4, 10−3, 10−2, 10−1, 100} 10
−4

10
−3

10
−2

10
−2

We conduct the experiments with the following hardware and software configurations:

• Operating System: Ubuntu 18.04.1 LTS

• CPU: Intel(R) Xeon(R) CPU E5-2699 v4@2.20GHz

• GPU: NVIDIA GeForce RTX 3090 with 24GB of Memory

• Software: Python 3.6.5; NumPy 1.19.2; PyTorch 1.10.1; PyTorch Geometric 2.0.3 [25].

4.2 Experiments on Synthetic Datasets
The experimental results are shown in Table 5, from which we have the following observations.

Our proposed INL consistently and significantly outperforms the baselines and achieves the best

performance in all settings. The results demonstrate the effectiveness of our proposed method in

handling distribution shifts, which has a remarkable out-of-distribution generalization ability. The

general invariant learning methods, e.g., IRM, GroupDRO, V-REx, only have slight improvements

to ERM. EERM is a recently proposed invariant method specifically designed for learning node

representations but assumes a single environment is shared for all the nodes. EERM outputs

competitive results in some settings but fails to obtain consistent improvements, indicatingmodeling

multiple latent environments is crucial for handling distribution shifts in graph. GIL achieves

promising gains over the other baselines, but the proposed method still performs better than it.

In addition, when 𝑟𝑡𝑟𝑎𝑖𝑛 = 1/3, i.e., no distribution shifts between training and testing data, our

proposed method also achieves the best results, meaning that learning invariant ego-subgraphs for
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Table 5. The node classification accuracy (%) on testing sets of the synthetic datasets. In each column, the
boldfaced and the underlined score denotes the best and the second-best result, respectively. Numbers in
the lower right corner denote standard deviations. “*” indicates the statistically significant improvements
(one-tailed t-test with 𝑝 < 0.05 ) upon the best baseline.

Citeseer Amazon-Photo

𝑟𝑡𝑟𝑎𝑖𝑛 𝑟 = 1/3 𝑟 = 0.5 𝑟 = 0.7 𝑟 = 1/3 𝑟 = 0.5 𝑟 = 0.7

GCN(ERM) 47.09±3.44 45.36±5.54 40.09±2.12 48.26±2.26 47.91±3.24 39.23±5.27
IRM 48.84±2.75 45.39±2.07 42.89±2.38 53.75±1.31 50.98±3.09 42.23±2.75

GroupDRO 49.32±6.47 46.30±5.44 40.68±2.83 49.62±6.45 47.65± 8.34 41.15±5.50
V-REx 47.53±3.65 43.11±4.06 41.03±4.29 47.13±8.01 48.53± 8.37 37.49±5.39
EERM 53.07±4.39 45.50±3.68 41.53±1.96 52.25±5.90 51.03±2.93 41.69±4.63
GIL 55.71±1.24 47.42±2.10 44.87±3.26 53.19±2.74 50.01±2.06 41.79±3.98
INL 60.48±0.77∗ 56.74±0.75∗ 54.78±2.50∗ 55.86±1.63∗ 55.07±2.27∗ 46.90±2.06∗

Improvement 4.77↑ 9.32↑ 9.91↑ 2.11↑ 4.04↑ 4.67↑

1/3 0.5 0.7
40

50

60

70

80

90

100

RO
C-

AU
C 

(%
)

Random
Node Feature Mask
Edge Mask

Fig. 4. Results of discovering the ground-truth invariant node features and edges on Citeseer.

nodes is also beneficial. As 𝑟𝑡𝑟𝑎𝑖𝑛 grows larger, the performance of all the methods tends to decrease

since there exists a larger degree of distribution shift. Nevertheless, our proposed method is able to

maintain the most relatively stable performance. In fact, the performance gap between INL and

the best results of baselines becomes more significant as the degree of distribution shift increases.

For example, the accuracy improvements against the strongest baselines increases from 4.77% to

9.91% when 𝑟𝑡𝑟𝑎𝑖𝑛 changes from 1/3 to 0.7 on Citeseer, indicating the powerful OOD generalization

ability of our method under various complex distribution shifts.

To further analyze whether our method can accurately capture the invariant ego-subgraphs

under distribution shifts, we compare the output invariant node features and structures with the

ground-truth on the synthetic dataset Citeseer. The evaluation metric is ROC-AUC. The results

in Figure 4 show that the ROC-AUC for discovering invariant node features and structures is

around 70% and 80%, respectively, which is significantly higher than random selection (50%). It

demonstrates our INL can discover the truly predictive invariant ego-subgraphs and further make

OOD generalized predictions.

ACM Trans. Inf. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.



Invariant Node Representation Learning under Distribution Shifts with Multiple Latent Environments 111:17

Table 6. The node classification results (accuracy for OGB-Arxiv, ROC-AUC for OGB-Proteins, %) on testing
sets of the real-world datasets. The boldfaced and the underlined score denotes the best and the second-
best result, respectively. Numbers in the lower right corner denote standard deviations. “*” indicates the
statistically significant improvements (one-tailed t-test with 𝑝 < 0.05 ) upon the best baseline.

Dataset OGB-Arxiv OGB-Proteins

Backbone Method 2014-2016 2016-2018 2018-2020 Species-1 Species-2 Species-3

GraphSAGE

ERM 45.24±0.60 42.25±1.02 38.75±0.97 66.44±0.48 64.18±0.59 57.61±1.72
IRM 45.31±0.56 42.48±1.98 40.23±1.07 67.03±0.41 64.38±0.87 57.54±1.13

GroupDRO 45.35±0.68 42.56±0.88 39.26±0.81 66.28±0.27 64.51±0.35 57.87±0.89
V-REx 45.27±0.71 42.51±1.13 39.31±0.96 67.43±0.18 64.38±0.51 57.71±1.42
EERM 46.15±0.98 43.27±1.01 41.61±0.96 66.40±0.59 64.39±0.12 57.12±1.21
GIL 47.92±0.45 45.78±0.62 41.27±0.91 67.39±0.86 66.54±1.38 55.81±1.76
INL 49.43±0.53∗ 49.19±0.98∗ 46.34±0.87∗ 72.20±0.41∗ 69.47±0.72∗ 61.07±1.45∗

GAT

ERM 45.94±1.03 43.52±0.95 40.42±0.98 66.34±0.45 64.35±0.60 57.83±1.75
IRM 46.73±0.91 44.32±0.91 42.04±0.99 66.33±0.30 64.61±0.43 56.91±0.93

GroupDRO 45.95±0.89 43.52±1.25 40.43±1.32 66.30±0.27 64.52±0.31 57.95±0.79
V-REx 45.93±0.87 45.69±0.81 41.01±1.03 66.14±0.58 64.31±0.60 57.73±1.32
EERM 45.99±1.22 45.32±0.84 42.01±1.36 66.35±0.48 64.32±0.21 56.13±0.98
GIL 47.70±0.93 45.65±1.41 41.87±1.89 66.31±0.69 67.12±0.89 55.98±0.83
INL 50.37±1.01∗ 49.12±1.23∗ 45.35±1.32∗ 73.89±0.39∗ 71.42±0.28∗ 60.36±1.12∗

4.3 Experiments on Real-world Graphs
We further evaluate the effectiveness of ourmethod on two real-world graph datasets, i.e. OGB-Arxiv

and OGB-Proteins from OGB [33]. The properties of citation networks can change significantly in

different time ranges. So the node distribution shifts on OGB-Arxiv are introduced by selecting

papers published before 2011 as training set, within 2011-2014 as validation set, and within 2014-

2016/2016-2018/2018-2020 as testing sets. For OGB-Proteins dataset, since the interactions between

proteins can vary from different species that the proteins come from, we split the protein nodes

into training/validation/test sets according to their species. We assume the test nodes are strictly
unseen during training stage, which is more common in practice and more challenging than the

default setting of OGB [33].

The experimental results are presented in Table 6. Our proposed method consistently achieves

the best performance, indicating that INL can well handle distribution shifts existing in real-world

scenarios. For example, INL increases the classification accuracy by 3.41% on OGB-Arxiv (tested on

2016-2018 with GraphSAGE backbone) and ROC-AUC by 7.54% on OGB-Proteins (tested on species-

1 with GAT backbone) against the strongest baselines respectively. Besides, different datasets have

different distribution shifts and none of the baselines can consistently achieve promising OOD

generalized performance as our method. Therefore, the results show that our proposed method can

well handle diverse types of distribution shifts in real graph datasets.

Besides the quantitative evaluation, we plot a showcase from the OGB-Arxiv to intuitively

validate the effectiveness of our method. Figure 5 shows that the learned invariant ego-subgraph

𝐺 𝐼𝑣 (denoted by solid lines) and variant ego-subgraph𝐺𝑆𝑣 (denoted by dashed lines) of one node 𝑣

(ID: 139,332). We plot the top-5 selected edges by the masks for simplicity. It can be observed that

the invariant ego-subgraph 𝐺 𝐼𝑣 learned by our method accurately corresponds to the neighbors in

the ego-graph from the same subject area (i.e., artificial intelligence), which have truly predictive

and invariant relations with the centered node. On the other hand, the variant ego-subgraph 𝐺𝑆𝑣
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Fig. 5. The learned invariant and variant ego-subgraphs of the papers 𝑣 and 𝑢 from OGB-Arxiv.

highlights the neighbors that are from different subject areas which are published in the same

year with the centered node and have a high citation index (spurious feature). Besides, there is

another paper 𝑢 whose subject area is information retrieval (IR) that also cites those papers with

high citation indexes, meaning that the node 𝑢 has similar variant patterns with node 𝑣 so that they

are in the same environment. We can observe that these nodes form clear cluster structures based

on the variant ego-subgraphs, demonstrating the effectiveness of the proposed graph clustering

algorithm in inferring latent environments.

4.4 Analysis of Node Environment Inference

0 25 50 75 100125150175200
Epoch

20

30

40

50

60

70

80

Te
st

 A
cc

ur
ac

y 
(%

) Test Accuracy

0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

M
od

ul
ar

ity
 / 

NM
IModularity

NMI

Fig. 6. The test accuracy and the performance of environment inference w.r.t training epochs.

In our proposed model, all components are jointly optimized. To show that the node environment

inference module and invariance regularization module can mutually promote each other, we

record the test accuracy, the modularity, which is a measurement for the quality of graph cluster,

and the normalized mutual information (NMI) [41], which is another metric (falling within the

range [0, 1]) for evaluating the clustering accuracy, as the model is trained. The results on Citeseer

(𝑟𝑡𝑟𝑎𝑖𝑛 = 0.7) are shown in Figure 6. We can observe that the test accuracy and the modularity

(clustering properties) improve synchronously over training. The results show that, as the training
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stage progresses, the invariant ego-subgraph generator is optimized so that it can generate more

informative invariant ego-subgraphs and therefore improve the performance on the testing set. On

the other hand, accurately discovering invariant ego-subgraphs can also promote identifying variant

ego-subgraphs, which capture the environment-discriminate features and better infer the latent

environments. In addition, we observe that the test accuracy and the NMI (clustering accuracy)

also improve collectively over training. Notice that INL achieves such results without needing any

ground-truth environment label.

These empirical results well support the following points: (1) The invariant and variant pat-

terns widely exist in real-world graphs and our proposed INL can well identify invariant/variant

ego-subgraphs under distribution shifts with multiple latent environments. (2) The variant ego-

subgraphs form clear clustering structures and our INL can capture such patterns to accurately

infer the environment labels of nodes. (3) Based on the inferred environments, our INL learns node

representations by the invariant ego-subgraph for each node so that it can achieve better OOD

generalization performance. The environment inference and invariance regularization module can

mutually enhance each other.

4.5 Ablation Studies

1/3 0.5 0.7
45

50

55

60

65

Ac
cu

ra
cy

 (%
)

Our Proposed INL
w/o Node Feature Mask
w/o Edge Mask

Fig. 7. Ablation studies of our method. We plot the accuracy (%) on the Citeseer datasets with different
strengths of spurious correlations.

We perform ablation studies over the key components of the invariant ego-subgraph generator

Ψ, i.e., masks on node features and edges, to understand their functionalities more deeply. We

compare INL with the following two ablated versions: (1) w/o node feature mask: it removes the

node feature mask by setting both invariant and variant node features in the ego-graph 𝐺𝑣 to 𝑋𝑣 ,

i.e., 𝑋 𝐼𝑣 = 𝑋𝑆𝑣 = 𝑋𝑣 . (2) w/o edge mask: it removes the edge mask by setting both invariant and

variant edges in the ego-graph 𝐺𝑣 to 𝐴𝑣 , i.e., 𝐴
𝐼
𝑣 = 𝐴

𝑆
𝑣 = 𝐴𝑣 . The results of the two ablated versions

drop compared with INL, as shown in Figure 7. The performance gaps between INL and the two

ablated versions become more significant as the degree of distribution shift increases (i.e., 𝑟𝑡𝑟𝑎𝑖𝑛
from 1/3 to 0.7), which demonstrates the significance of accurately identifying the invariant node

features and edges by the learnable masks.

4.6 Training dynamics
We can observe the convergence of our proposed method empirically, although the clustering

objective in environment inference (i.e., Eq. (4)) and invariance objective in invariance regularization
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(i.e., Eq. (8)) are iteratively optimized. In Figure 8 (a)(b), we show the two objectives in the training

process on Citeseer (𝑟𝑡𝑟𝑎𝑖𝑛 = 0.7) and OGB-Arxiv, respectively. The loss converges before reaching

the maximal training epoch, while the results on the other datasets show similar patterns.

0 25 50 75 100 125 150 175 200
Epoch

0.0

0.6

1.2

1.8

2.4

In
va

ria
nc

e 
Ob

je
ct

iv
e

4

3

2

1

0

Cl
us

te
rin

g 
Ob

je
ct

iv
eInvariance Objective

Clustering Objective

(a) Citeseer

0 100 200 300 400 500
Epoch

0.0

1.5

3.0

4.5

6.0

In
va

ria
nc

e 
Ob

je
ct

iv
e

4.5

3.0

1.5

0.0

1.5

Cl
us

te
rin

g 
Ob

je
ct

iv
eInvariance Objective

Clustering Objective

(b) OGB-Arxiv

Fig. 8. The invariance objective and clustering objective in the training process on two datasets.

In Figure 9, we also show the objective of the inner iteration in Algorithm 1, i.e., the training

dynamics of the clustering objective in one epoch of the outer iteration. The epoch of the outer

iteration is specified as 100 and 250 for Citeseer (𝑟𝑡𝑟𝑎𝑖𝑛 = 0.7) and OGB-Arxiv, respectively, which

is the middle of the whole training process, while the results in other epochs of the outer iteration

show similar patterns.
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Fig. 9. The clustering objective in one epoch of the training process on two datasets.

4.7 Time Complexity Analysis
The time complexity of the proposed INL is𝑂 ( |𝐸 | 𝑑 + |𝑉 | 𝑑2), where |𝑉 | and |𝐸 | denotes the number

of nodes and edges, respectively, and 𝑑 is the dimensionality of the node representations. Specifi-

cally, we adopt the message-passing GNN which has a complexity of𝑂 ( |𝐸 | 𝑑 + |𝑉 | 𝑑2) to instantiate
the GNN components in INL, and the GNNs are shared for all ego-graphs. Since we only need to

generate mask for the existing edges in graphs, the time complexity of generating invariant and

variant ego-subgraphs and further obtaining their representations is 𝑂 (|𝐸 | 𝑑 + |𝑉 | 𝑑2). The time

complexity of calculating the modularity matrix 𝐵 in environment inference is𝑂 ( |𝐸 |
(
𝑑 + |E𝑖𝑛𝑓 𝑒𝑟 |

)
+
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|𝑉 |
(
𝑑 + |E𝑖𝑛𝑓 𝑒𝑟 |

)
2), where |E𝑖𝑛𝑓 𝑒𝑟 | denotes the number of inferred environments. The time com-

plexity of the invariance regularizer is 𝑂 ( |E𝑖𝑛𝑓 𝑒𝑟 |𝑑2), as the number of parameters for most GNNs

is 𝑂 (𝑑2). Since |E𝑖𝑛𝑓 𝑒𝑟 | are small constants, the overall time complexity of INL is 𝑂 ( |𝐸 | 𝑑 + |𝑉 | 𝑑2).
In comparison, the time complexity of other GNN-based node representation methods is also

𝑂 ( |𝐸 | 𝑑 + |𝑉 | 𝑑2). Therefore, the time complexity of our proposed INL is on par with the existing

methods.

In addition to the analysis of the time complexity, the empirical time cost of the proposed

method and baselines are also tested. We show the results on Citeseer (𝑟𝑡𝑟𝑎𝑖𝑛 = 0.7) in Figure 10

while the results on other datasets show similar patterns. The results indicate that INL does not

introduce infeasible time cost for achieving the best performances in practice. Its time cost for each

training epoch is comparable with the baselines and more efficient than some competitive methods,

demonstrating the efficiency and effectiveness of our method.
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Fig. 10. The comparisons of empirical time cost per epoch during training our method and baselines on
Citeseer (𝑟𝑡𝑟𝑎𝑖𝑛 = 0.7).

4.8 Comparisons with GNNExplainer

Table 7. The results (ROC-AUC, %) of discovering the ground-truth invariant node features and edges on
Citeseer.

Node Feature Mask Edge Mask

𝑟𝑡𝑟𝑎𝑖𝑛 𝑟 = 1/3 𝑟 = 0.5 𝑟 = 0.7 𝑟 = 1/3 𝑟 = 0.5 𝑟 = 0.7

GNNExplainer 61.75±2.38 50.18±3.09 40.87±4.19 77.30±3.91 67.09±4.15 51.94±7.10
INL 68.04±2.19 69.18±2.06 70.16±2.54 78.68±3.10 79.09±3.21 80.51±3.13

We compare the output invariant node features and structures generated by the proposed INL
and GNNExplainer [88] with the ground-truth on the synthetic dataset Citeseer. Specifically, we

generate post-hoc explanations from GNNExplainer as the identified invariant ego-subgraphs,

where we use the models trained under ERM as the models to explain. The evaluation metric

is ROC-AUC. The results in Table 7 show that the masks on invariant node features and edges

generated by GNNExplainer can be easily affected by the spurious correlations. Moreover, even

when spurious correlations do not exist, the ROC-AUC of masks on invariant node features and

edges generated by our INL still outperforms the result of the explainability method GNNExplainer,

showing the effectiveness of INL when identifying invariant patterns.
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Fig. 11. Impact of the number of inferred environment |E𝑖𝑛𝑓 𝑒𝑟 |. Red and blue lines denote the results of our
INL and grey dashed lines are the best results of all baselines.
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Fig. 12. Impact of the invariance regularizer coefficient _. Red and blue lines denote the results of our INL
and grey dashed lines are the best results of all baselines.
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Fig. 13. Impact of the number of epochs for clustering to infer environments in each training epoch (i.e.,
Epoch_Cluster in Algorithm 1). Red and blue lines denote the results of our INL and grey dashed lines are
the best results of all baselines.

4.9 Hyper-parameter Sensitivity
We investigate the sensitivity of hyper-parameters of our method, including the number of inferred

environments |E𝑖𝑛𝑓 𝑒𝑟 |, the invariance regularizer coefficient _, and the number of epochs for

clustering to infer environments in each training epoch (i.e., Epoch_Cluster in Algorithm 1). For

simplicity, we only report the results on Citeseer (𝑟𝑡𝑟𝑎𝑖𝑛 = 0.7) and OGB-Arxiv (2016-2018 with

GraphSage backbone) in Figures 11-13 while the results on other datasets show similar patterns.
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First, the number of inferred environments has a slight impact on the model performance. For

Citeseer, the performance reaches a peak when |E𝑖𝑛𝑓 𝑒𝑟 | = 3, showing that INL achieves the best

result when the number of environments matches the ground truth. For OGB-Arxiv, the best

number of environments is |E𝑖𝑛𝑓 𝑒𝑟 | = 5. A plausible reason is that OGB-Arxiv dataset consists of

more nodes and edges, which form more environments than Citeseer. Second, we also find the

coefficient _ has a slight influence on the performance, indicating that we need to properly balance

the classification loss and the invariance regularizer term. Finally, a proper value of the hyper-

parameter Epoch_Cluster is important. A small value may not be sufficient to infer the environments

accurately, while a very large value is unnecessary and may affect the training efficiency. Although

an appropriate choice of hyper-parameters can further improve the performance, our method is not

very sensitive to hyper-parameters. Figures 11-13 show that INL can outperform the best baselines

with a wide range of hyper-parameters choices.

5 RELATEDWORKS
In this section, we review the related works of node representation learning, generalization of

GNNs, explainability of GNNs, invariant learning, and modularity.

5.1 Node Representation Learning
Node representation learning on graphs has been extensively studied such as random-walk based

methods [19, 29, 63] and matrix factorization-based methods [10, 12, 62]. Recently, graph neural

networks (GNNs) [28, 38, 75] have revolutionized the field of node representation learning [96].

They generally utilize a neighborhood aggregation (or message passing) paradigm to capture the

structural information within nodes’ neighborhood. The message passing of the 𝑡-th layer in GNNs

is usually denoted as:

Z(𝑡 )𝑣 = COMBINE
(𝑡 ) (Z(𝑡−1)𝑣 ,m(𝑡 )𝑣 ), m(𝑡 )𝑣 = AGGREGATION

(𝑡 ) ({Z(𝑡−1)𝑢 }), (25)

where𝑢 is the neighbor of node 𝑣 .Z(𝑡 )𝑣 represents the embedding of node 𝑣 at the 𝑡-th layer andZ(0)𝑣 is

initializedwith the input node feature.m(𝑡 )𝑣 represents the aggregatedmessage from the neighbors of

node 𝑣 . COMBINE
(𝑡 ) (·) and AGGREGATION(𝑡 ) (·) are the combination and aggregation functions

of GNNs [89]. Many GNNs and their variants [30, 46, 53, 59, 90, 98] have been proposed, achieving

state-of-the-art performance on various tasks and demonstrating profound successes in challenging

applications, such as recommendation systems [9, 26, 31, 77, 83], information retrieval [17, 91, 95],

drug discovery [18, 80], protein function prediction [33, 36], traffic forecasting [21, 37], etc. However,

most existing GNNs do not consider the out-of-distribution generalization ability, so that their

performances drop substantially on testing data with distribution shifts [33, 44, 80].

5.2 Generalization of GNNs
A few recent works begin to study the generalization ability of GNNs. The early works [27,

48, 66, 76] focus on the generalization bounds over the training distribution, i.e., in-distribution

generalization, which is orthogonal to the OOD generalization and not suitable for the distribution

shifts studied in this paper. More recently, the OOD generalization ability of GNNs starts to receive

research interest [7, 39, 43, 58, 79, 82, 87]. In particular, Bevilacqua et al. [7] learn size-invariant

representations for tackling the distribution shifts that exist on graph size. DIR [79] is proposed to

discover invariant rationales for GNNs. GIL [45] focuses on capturing the invariant relationships

between predictive graph structural information and labels under distribution shifts for OOD

generalization. These works mostly concentrate on graph-level tasks and largely ignore the more

challenging node-level tasks with multiple latent environments. Some works [24, 54, 99] are
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proposed to deal with semi-supervised node classification under non-I.I.D. setting. They focus on

the adaptation ability of GNNs under distribution shifts, i.e., transferring GNN models trained on

the source domain (i.e., environment) to the related target domain with different distributions. For

example, SR-GNN [99] is proposed to handle distribution shifts between the selected training and

testing nodes by adopting CMD [93] and importance sampling. The work [24] proposes to learn

GNN models by considering agnostic label selection bias. However, these works assume that test

data are available and will participate in the training process, which is not in the scope of the OOD

generalization problem studied in this paper. One exception is the very recent pioneering work

EERM [78] which studies invariant node learning by assuming all nodes share a single environment.

However, it ignores the more common and challenging situation that nodes are from multiple

latent environments. We empirically show that our proposed method greatly outperforms EERM

by effectively identifying and modeling multiple latent environments.

5.3 Explainability of GNNs
The studies on the explainability of GNNs aim to understand the predictions of black-box GNNs by

providing the explanations [20, 72, 92]. They generally try to answer which nodes, edges, or features

of the input graph are more important for predicting the labels. Several works are proposed to find

a subgraph structure and a small subset of node features for the target nodes as the explanations

for GNN’s predictions [49, 52, 88]. For example, GNNExplainer [88] learns the soft masks on edges

and node features to explain the predictions with the mask optimization. PGExplainer [52] further

learns the approximated discrete masks on edges to explain the predictions with a parameterized

mask predictor. GraphMask [68] is a post-hoc method for explaining the importance of edges in the

graph convolution layer. A recent work [79] finds that these explainability works are very sensitive

to distribution shifts as most GNN models and proposes discovering invariant explanations in

graph-level classification tasks. However, these works focus on understanding the predictions of

GNNs instead of learning node representations for better generalization ability under distribution

shifts studies in this paper.

5.4 Invariant Learning
Invariant learning has received surging attentions to enable OOD generalization, aiming to gener-

alize to unseen environments by exploiting the invariant relationships between features and labels

across distribution shifts. Several works [2, 4, 11, 40, 42, 64] are proposed to learn invariant model

and show guaranteed generalization under distribution shifts. However, most existing methods

heavily rely on additional environment labels that have to be explicitly provided in the training

dataset. Such annotations for the nodes on graph data are usually unavailable and prohibitively

expensive to collect, leading that these invariant learning methods inapplicable. A few works

study OOD generalization on latent environments in computer vision [16, 51, 56], which cannot

be directly applied to graph data. In summary, how to learn invariant node representations under

distribution shits without explicit environment labels remains largely unexplored in the literature.

5.5 Modularity
The Modularity is generally used to measures the divergence between the number of intra-cluster

edges and the expected number of a random graph [60], where nodes 𝑣 and 𝑢 with degrees 𝑑𝑣 and

𝑑𝑢 are connected with probability 𝑑𝑣𝑑𝑢/2𝑚 and𝑚 is the edge number. By maximizing the modularity,

the nodes are densely connected within each cluster [73]:

max

𝐶
𝑄 =

1

2𝑚
trace

(
𝐶⊤𝐴𝐶 − 1

2𝑚
diag

(
𝐶⊤dd⊤𝐶

) )
, (26)
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where 𝐶 is a cluster assignment matrix and 𝐴 is the adjacency matrix of the input graph for

clustering. d and𝑚 indicate the degree vector and the number of edges, respectively. However,

there are two obstacles for directly adopting this classical modularity maximization method to learn

cluster assignment as the inferred environments. The first is that the modularity maximization

ignores the inter-cluster edges whose connecting probability should be minimized in the meantime.

The second is that we should use the variant patterns (𝑋𝑆 , 𝐴𝑆 ) of the input graph for clustering

rather than use the whole input graph (𝑋,𝐴). Since the invariant patterns capture the invariant
relationships between predictive node features and graph structures with the node labels, the

variant patterns in turn capture variant spurious correlations under different distributions.

6 CONCLUSIONS
In this paper, we study learning invariant node representations under distribution shifts with mul-

tiple latent environments and propose a principled and novel method (INL). The proposed method

can identify the invariant and variant ego-subgraphs of nodes, infer the environment label of nodes

without supervisions, and learn invariant node representations through regularization. Extensive

experiments on both synthetic and real-world node classification benchmarks demonstrate the

superiority of our method against state-of-the-art baselines when there exist distribution shifts.

APPENDICES
A PROOFS
A.1 Proof of Proposition 3

Proof. Let 𝑎
𝐼 ,𝐼
𝑣 = 1

|N𝐼
𝑣 |
∑
𝑢∈N𝐼

𝑣
𝑥 𝐼𝑢 be the aggregated invariant node features from invariant

ego-subgraph 𝐺 𝐼𝑣 . Similarly, we define 𝑎
𝑆,𝐼
𝑣 = 1

|N𝐼
𝑣 |
∑
𝑢∈N𝐼

𝑣
𝑥𝑆𝑢 , 𝑎

𝐼 ,𝑆
𝑣 = 1

|N𝑆
𝑣 |

∑
𝑢∈N𝑆

𝑣
𝑥 𝐼𝑢 , and 𝑎

𝑆,𝑆
𝑣 =

1

|N𝑆
𝑣 |

∑
𝑢∈N𝑆

𝑣
𝑥𝑆𝑢 . The first and second superscript of 𝑎𝑣 indicate the invariant/variant node features

and structures, respectively. We further denote 𝑒𝐼𝑣 =
1

|N𝐼
𝑣 |
∑
𝑢∈N𝐼

𝑣
𝑒𝑢 , and 𝑒

𝑆
𝑣 = 1

|N)𝑆𝑣 |
∑
𝑢∈N𝑆

𝑣
𝑒𝑢 . The

risk of predictor 𝑓 is:

R =
1

|𝑉 |
∑︁
𝑣∈𝑉
Eyv |Gv=𝐺𝑣

[
| |𝑦𝑣 − 𝑦𝑣 | |22

]
=

1

|𝑉 |
∑︁
𝑣∈𝑉
E𝜖1,𝜖2

[
| |
(
\1𝑎

𝐼 ,𝐼
𝑣 + \2𝑎𝑆,𝐼𝑣 + \3𝑎𝐼 ,𝑆𝑣 + \4𝑎𝑆,𝑆𝑣

)
− (𝑎𝐼 ,𝐼𝑣 + 𝜖1) | |22

]
=

1

|𝑉 |
∑︁
𝑣∈𝑉
E𝜖1,𝜖2

[
| | (\1 + \2 − 1) 𝑎𝐼 ,𝐼𝑣 + (\3 + \4) 𝑎𝐼 ,𝑆𝑣 + \2 (𝜖1 + 𝜖2 + 𝑒𝐼𝑣) + \4 (𝜖1 + 𝜖2 + 𝑒𝑆𝑣 ) − 𝜖1 | |22

] (27)

The first-order derivative w.r.t. \1 is:

𝜕R
𝜕\1

=
1

|𝑉 |
∑︁
𝑣∈𝑉
E𝜖1,𝜖2

[
2

(
(\1 + \2 − 1) 𝑎𝐼 ,𝐼𝑣 + (\3 + \4) 𝑎𝐼 ,𝑆𝑣 + \2 (𝜖1 + 𝜖2 + 𝑒𝐼𝑣) + \4 (𝜖1 + 𝜖2 + 𝑒𝑆𝑣 ) − 𝜖1

)
𝑎
𝐼 ,𝐼
𝑣

]
=

1

|𝑉 |
∑︁
𝑣∈𝑉
E𝜖1,𝜖2

[
2

(
(\1 + \2 − 1) 𝑎𝐼 ,𝐼𝑣 𝑎𝐼 ,𝐼𝑣 + (\3 + \4) 𝑎𝐼 ,𝐼𝑣 𝑎𝐼 ,𝑆𝑣

)] (28)

where the second equation holds because 𝑎
𝐼 ,𝐼
𝑣 is independent with 𝜖1, 𝜖2, 𝑒

𝐼
𝑣 , and 𝑒

𝑆
𝑣 . Therefore, let

𝜕R
𝜕\1

= 0, we have

1

|𝑉 |
∑︁
𝑣∈𝑉
E𝜖1,𝜖2

[
(\1 + \2 − 1) 𝑎𝐼 ,𝐼𝑣 𝑎𝐼 ,𝐼𝑣 + (\3 + \4) 𝑎𝐼 ,𝐼𝑣 𝑎𝐼 ,𝑆𝑣

]
= 0 (29)
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The first-order derivative w.r.t. \2 is:

𝜕R
𝜕\2

=
1

|𝑉 |
∑︁
𝑣∈𝑉
E𝜖1,𝜖2

[
2

(
(\1 + \2 − 1) 𝑎𝐼 ,𝐼𝑣 + (\3 + \4) 𝑎𝐼 ,𝑆𝑣 + \2 (𝜖1 + 𝜖2 + 𝑒𝐼𝑣) + \4

(
𝜖1 + 𝜖2 + 𝑒𝑆𝑣

)
− 𝜖1

) (
𝑎
𝐼 ,𝐼
𝑣 + 𝜖1 + 𝜖2 + 𝑒𝐼𝑣

)]
=

1

|𝑉 |
∑︁
𝑣∈𝑉
E𝜖1,𝜖2

[
2

(
(\1 + \2 − 1) 𝑎𝐼 ,𝐼𝑣 𝑎𝐼 ,𝐼𝑣 + (\3 + \4) 𝑎𝐼 ,𝐼𝑣 𝑎𝐼 ,𝑆𝑣 + \2

(
𝜖2
1
+ 𝜖2

2
+ 𝑒𝐼𝑣𝑒𝐼𝑣

)
+ \4

(
𝜖2
1
+ 𝜖2

2
+ 𝑒𝐼𝑣𝑒𝑆𝑣

)
− 1

)]
=

1

|𝑉 |
∑︁
𝑣∈𝑉
E𝜖1,𝜖2

[
2

(
\2

(
𝜖2
1
+ 𝜖2

2
+ 𝑒𝐼𝑣𝑒𝐼𝑣

)
+ \4

(
𝜖2
1
+ 𝜖2

2
+ 𝑒𝐼𝑣𝑒𝑆𝑣

)
− 1

)]
=

1

|𝑉 |
∑︁
𝑣∈𝑉
E𝜖1,𝜖2

[
2

(
\2

(
2 + 𝑒𝐼𝑣𝑒𝐼𝑣

)
+ \4

(
2 + 𝑒𝐼𝑣𝑒𝑆𝑣

)
− 1

)]
,

(30)

where the second equation holds because of the independence among 𝑎
𝐼 ,𝐼
𝑣 , 𝜖1, 𝜖2, and 𝑒

𝐼
𝑣 or 𝑒

𝑆
𝑣 . The

third equation holds since we let
𝜕R
𝜕\1

= 0. The last equation holds since 𝜖1 and 𝜖2 follow standard

normal distribution. We further let
𝜕R
𝜕\2

= 0 and obtain:

1

|𝑉 |
∑︁
𝑣∈𝑉
E𝜖1,𝜖2

[
\2

(
2 + 𝑒𝐼𝑣𝑒𝐼𝑣

)
+ \4

(
2 + 𝑒𝐼𝑣𝑒𝑆𝑣

)
− 1

]
= 0. (31)

Similarly, let
𝜕R
𝜕\3

= 0, we have

1

|𝑉 |
∑︁
𝑣∈𝑉
E𝜖1,𝜖2

[
(\1 + \2 − 1) 𝑎𝐼 ,𝐼𝑣 𝑎𝐼 ,𝑆𝑣 + (\3 + \4) 𝑎𝐼 ,𝑆𝑣 𝑎

𝐼 ,𝑆
𝑣

]
= 0. (32)

And let
𝜕R
𝜕\4

= 0, we have

1

|𝑉 |
∑︁
𝑣∈𝑉
E𝜖1,𝜖2

[
\2

(
2 + 𝑒𝐼𝑣𝑒𝑆𝑣

)
+ \4

(
2 + 𝑒𝑆𝑣 𝑒𝑆𝑣

)
− 1

]
= 0. (33)

Finally, given Eqs. (29) (31) (32) (33), we can derive the solution:

\1 = 1 − `𝑆

2(`𝑆 − `𝐼 )
, \2 =

`𝑆

2(`𝑆 − `𝐼 )
, \3 =

`𝐼

2(`𝑆 − `𝐼 )
, \4 =

−`𝐼
2(`𝑆 − `𝐼 )

. (34)

□

A.2 Proof of Proposition 4

Proof. If the invariance regularizer trace

(
VarE𝑖𝑛𝑓 𝑒𝑟 (∇\R𝑒 )

)
in Eq. (8) reaches the minimum,

we have trace

(
VarE𝑖𝑛𝑓 𝑒𝑟 (∇\R𝑒 )

)
= 0. It means that the variance of

𝜕R𝑒
𝜕\𝑖

among all environments

is 0, i.e.,
𝜕R𝑒
𝜕\𝑖

keeps invariant between any two environments, 𝑖 = 1, 2, 3, 4. Recall that

𝜕R𝑒
𝜕\1

=
1

|𝑉 𝑒 |
∑︁
𝑣∈𝑉 𝑒

E𝜖1,𝜖2

[
2

(
(\1 + \2 − 1) 𝑎𝐼 ,𝐼𝑣 + (\3 + \4) 𝑎𝐼 ,𝑆𝑣 + \2 (𝜖1 + 𝜖2 + 𝑒𝐼𝑣) + \4 (𝜖1 + 𝜖2 + 𝑒𝑆𝑣 ) − 𝜖1

)
𝑎
𝐼 ,𝐼
𝑣

]
=

1

|𝑉 𝑒 |
∑︁
𝑣∈𝑉 𝑒

E𝜖1,𝜖2

[
2

(
(\1 + \2 − 1) 𝑎𝐼 ,𝐼𝑣 𝑎𝐼 ,𝐼𝑣 + (\3 + \4) 𝑎𝐼 ,𝐼𝑣 𝑎𝐼 ,𝑆𝑣

)] (35)
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and

𝜕R𝑒
𝜕\2

=
1

|𝑉 𝑒 |
∑︁
𝑣∈𝑉 𝑒

E𝜖1,𝜖2

[
2

(
(\1 + \2 − 1) 𝑎𝐼 ,𝐼𝑣 + (\3 + \4) 𝑎𝐼 ,𝑆𝑣 + \2 (𝜖1 + 𝜖2 + 𝑒𝐼𝑣) + \4

(
𝜖1 + 𝜖2 + 𝑒𝑆𝑣

)
− 𝜖1

) (
𝑎
𝐼 ,𝐼
𝑣 + 𝜖1 + 𝜖2 + 𝑒𝐼𝑣

)]
=

1

|𝑉 𝑒 |
∑︁
𝑣∈𝑉 𝑒

E𝜖1,𝜖2

[
2

(
(\1 + \2 − 1) 𝑎𝐼 ,𝐼𝑣 𝑎𝐼 ,𝐼𝑣 + (\3 + \4) 𝑎𝐼 ,𝐼𝑣 𝑎𝐼 ,𝑆𝑣 + \2

(
𝜖2
1
+ 𝜖2

2
+ 𝑒𝐼𝑣𝑒𝐼𝑣

)
+ \4

(
𝜖2
1
+ 𝜖2

2
+ 𝑒𝐼𝑣𝑒𝑆𝑣

)
− 1

)]
Therefore,

𝜕R𝑒
𝜕\𝑖

can keep invariant between any two environments for 𝑖 = 1, 2, 3, 4, only when

satisfying \3 + \4 = 0, \2 = 0, and \4 = 0, Finally, optimizing the invariance regularizer in Eq. (8) to

the minimum can lead to [\2, \3, \4] = [0, 0, 0], so that the model can make predictions only based

on the invariant patterns and achieve promising OOD generalization under distribution shifts. □
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